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a b s t r a c t

This paper proposes a hierarchical, multi-resolution framework for the identification of
model parameters and their spatially variability from noisy measurements of the
response or output. Such parameters are frequently encountered in PDE-based models
and correspond to quantities such as density or pressure fields, elasto-plastic moduli
and internal variables in solid mechanics, conductivity fields in heat diffusion problems,
permeability fields in fluid flow through porous media etc. The proposed model has all
the advantages of traditional Bayesian formulations such as the ability to produce mea-
sures of confidence for the inferences made and providing not only predictive estimates
but also quantitative measures of the predictive uncertainty. In contrast to existing
approaches it utilizes a parsimonious, non-parametric formulation that favors sparse rep-
resentations and whose complexity can be determined from the data. The proposed
framework in non-intrusive and makes use of a sequence of forward solvers operating
at various resolutions. As a result, inexpensive, coarse solvers are used to identify the
most salient features of the unknown field(s) which are subsequently enriched by invok-
ing solvers operating at finer resolutions. This leads to significant computational savings
particularly in problems involving computationally demanding forward models but also
improvements in accuracy. It is based on a novel, adaptive scheme based on Sequential
Monte Carlo sampling which is embarrassingly parallelizable and circumvents issues with
slow mixing encountered in Markov Chain Monte Carlo schemes. The capabilities of the
proposed methodology are illustrated in problems from nonlinear solid mechanics with
special attention to cases where the data is contaminated with random noise and the
scale of variability of the unknown field is smaller than the scale of the grid where obser-
vations are collected.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The prodigious advances in computational modeling of physical processes and the development of highly non-linear,
multiscale and multiphysics models poses several challenges in parameter identification. We are frequently using large, for-
ward models which imply a significant computational burden, in order to analyze complex phenomena.The extensive use of
such models poses several challenges in parameter identification as the accuracy of the results provided depends strongly on
assigning proper values to the various model parameters. In mechanics of materials, accurate mechanical property identifi-
cation can guide damage detection and an informed assessment of the system’s reliability [36]. Identifying property-cross
. All rights reserved.
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correlations can lead to the design of multi-functional materials [61]. In biomechanics, the detection of variations in mechan-
ical properties of human tissue can reveal the appearance of diseases (arteriosclerosis, malignant tumors) but can also be
used to assess the effectivity of various treatments [4,20]. Permeability estimation for soil transport processes can assist
in detection of contaminants, oil exploration etc [22,68].

We consider phenomena described by a set of (coupled) elliptic, parabolic or hyperbolic PDEs and associated boundary
(and initial) conditions:
AðyðxÞ; f ðxÞÞ ¼ 0; 8x 2 D ð1Þ
where A denotes the differential operator defined on a domain D 2 Rd, where d is the number of spatial dimensions. A de-
pends on spatially varying coefficients f ðxÞ; x 2 D. Advances in computational mathematics have given rise to several effi-
cient solvers for a wide-range of such systems and have revolutionized simulation-based analysis and design [52]. Our
primary interest is to identify f ðxÞ from a set of (potentially noisy) measurements of the response yi ¼ yðxiÞ at a number
of distinct locations xi 2 D. In the case of time-dependent PDEs, the available data might also be indexed by time. Several
different processes in solid and fluid mechanics, transport phenomena, heat diffusion etc fall under this general setting
and even though the coefficients f ðxÞ have a different physical interpretation, the associated inverse problems exhibit similar
mathematical characteristics.

Two basic approaches have been followed in addressing problems of data-driven parametric identification. On one
hand, deterministic optimization techniques which attempt to minimize the sum of the squares of the deviations between
model predictions and observations. Gradient or global, intrusive or non-intrusive techniques are introduced for perform-
ing the optimization task. Usually the objective function is augmented with regularization terms (e.g. Tikhonov regulari-
zation [58] which alleviate issues with the ill-posednesss of the problem [5,18,26,37,59,64]. Such deterministic inverse
techniques based on exact matching or least-squares optimization, lead to point estimates of unknowns without rigor-
ously considering the statistical nature of system uncertainties and without providing quantification of the uncertainty
in the inverse solution.

The direct stochastic counterpart of optimization methods involves frequentist approaches based on maximum likelihood
estimators that aim at maximizing the probability of observations given the inverse solution maximum [17,19]. In recent
years significant attention has been directed towards statistical approaches based on the Bayesian paradigm which attempt
to calculate a (posterior) probability distribution function on the parameters of interest. Bayesian formulations offer several
advantages as they provide a unified framework for dealing with the uncertainty introduced by the incomplete and noisy
measurements and assessing quantitatively resulting inferential uncertainties. Significant successes have been noted in
applications such as medical tomography [69], geological tomography [2,24], hydrology [43], petroleum engineering
[8,27], as well as a host of other physical, biological, or social systems [41,47,56,67].

Identification of spatially varying model parameters poses several modeling and computational issues. Representations of
the parametric fields in existing approaches artificially impose a minimum length scale of variability usually determined by
the discretization size of the governing PDEs [43]. Furthermore, they are associated with a very large vector of unknowns.
Inference in high-dimensional spaces using standard optimization or sampling schemes (e.g. Markov Chain Monte Carlo
(MCMC)), is generally impractical as it requires an exuberant number of calls to the forward simulator in order to achieve
convergence. Particularly in Bayesian formulations where the inference results are much richer and involve a distribution
rather than a single value for the parameters of interest, the computational effort implied by repeated calls to the forward
solver can be enormous and constitute the method impractical for realistic applications. These problems are amplified if the
posterior distribution is multi-modal i.e. several significantly different scenaria are likely given the available data. While it is
apparent that, computationally inexpensive, coarser scale simulations can assist the identification process [13], the critical
task of efficiently transferring the information across resolutions still remains [30,49,68]. Previous attempts using parallel
tempering (e.g. [32] or hierarchical representations based on Markov trees [65] require performing inference on represen-
tations at various resolutions simultaneously.

In the present paper we adopt a nonparametric model which is independent of the grid of the forward solver and is rem-
iniscent of non-parametric kernel regression methods. The unknown parametric field is approximated by a superposition of
kernel-type functions centered at various locations. The cardinality of the representation, i.e. the number of such kernels, is
treated as an unknown to be inferred in the Bayesian formulation. This gives rise to a very flexible model that is able to adapt
to the problem and the data at hand and find succinct representations of the parametric field of interest. Prior information on
the scale of variability can be directly introduced in the model.

Inference is performed using Sequential Monte Carlo samplers. They utilize a set of random samples, named particles,
which are propagated using simple importance sampling, resampling and updating/rejuvenation mechanisms. The algo-
rithm is directly parallelizable as the evolution of each particle is by-and-large independent of the rest. The sequence of dis-
tributions defined is based on using solvers that operate on different resolutions and which successively produce finer
discretizations. This results in an efficient hierarchical approach that makes use of the results from solvers operating at
the coarser scales in order to update them based on analyses on a finer scale. The particulate approximations produced pro-
vide concise representations of the posterior which can be readily updated if more data become available or if more accurate
solvers are employed.



6186 P.S. Koutsourelakis / Journal of Computational Physics 228 (2009) 6184–6211
2. Methodology

2.1. Hierarchical bayesian model

The central goal of this work is to build mathematical methods that utilize limited and noisy observations/measurements
in order to identify the spatial variability of model parameters. Given the significant uncertainty arising from the random
noise, lack of data and model error, point estimates are of little use. Furthermore it is important to quantify the confidence
in the estimates made but also in the predictive ability of the model of interest. To that end we adopt a Bayesian perspective.
Bayesian formulations differ from classical statistical approaches (frequentist) in that all unknown parameters (denoted by
h) are treated as random. Hence the results of the inference process are not point estimates but distribution functions.

The basic elements of Bayesian models are the likelihood function LðhÞ ¼ pðyjhÞ which is a conditional probability distri-
bution and gives a (relative) measure of the propensity of observing data y for a given model configuration specified by the
parameters h. The likelihood function is also encountered in frequentist formulations where the unknown model parameters
h are determined by maximizing LðhÞ. This could be thought as the probabilistic equivalent of deterministic optimization
techniques commonly used in inverse problems. It can suffer from the same issues related to the ill-posedeness of the prob-
lem. The second component of Bayesian formulations is the prior distribution pðhÞwhich encapsulates in a probabilistic man-
ner any knowledge/information/insight that is available to the analyst prior to observing the data. Although the prior is a
point of frequent criticism due to its inherently subjective nature, it can prove extremely useful in engineering contexts
as it provides a mathematically consistent vehicle for injecting the analyst’s insight and physical understanding. The com-
bination of prior and likelihood based on Bayes’ rule yields the posterior distribution pðhÞ which probabilistically summarizes
the information extracted from the data with regards to the unknown h:
pðhÞ ¼ pðhjyÞ ¼ pðyjhÞpðhÞ
pðyÞ / pðyjhÞpðhÞ ð2Þ
Hence Bayesian formulations allow for the possibility of multiple solutions – in fact any h in the support of the likelihood and
the prior is admissible – whose relative plausibility is quantified by the posterior. Credible intervals can be readily estimated
from the posterior which quantify inferential uncertainties about the unknowns.

Without loss of generality, we postulate the existence of a deterministic, forward model which in most cases of practical
interest corresponds to a Finite Element or Finite Difference model of the governing differential equations. Naturally, forward
models allow for various levels of discretization of the spatial domain and let r denote the resolution they operate upon (lar-
ger r implies finer resolution). In this paper, forward solvers are viewed as messengers, that carry information about the
underlying material properties as they manifest themselves in the response (mechanical, thermal etc) of the medium of
interest. This is especially true in the context of recently developed upscaling schemes [12,16,33,34,39,42,55,62] which at-
tempt to capture the effect of finer scale material variability while operating on a coarser grid. In general, the finer the res-
olution of the forward solver, the more information this provides. This however comes at the expense of computational
effort. It is not unusual that the sufficient resolution of the property fluctuations in many systems of practical interest re-
quires several CPU-hours for a single analysis. Despite the fidelity and accuracy of such high-resolution solvers, they can
be of little use in the context of parameter identification as they will generally have to be called upon several times and sev-
eral system analyses will have to be performed.

Hence an accurate but expensive messenger is not the optimal choice if several pieces of information need to be commu-
nicated. In many cases however, the fidelity of the message can be compromised if the expense associated with the messen-
ger is smaller. This is especially true if the loss of accuracy can be quantified, measures of confidence can be provided and
furthermore if it leads to the same decisions/predictions. In this project we propose a consistent framework for using faster
but less-accurate forward solvers operating on coarser resolutions in order to expedite property identification. Furthermore
these solvers provide a natural hierarchy of models that if appropriately coupled can further expedite the identification pro-
cess. Following the analog introduced earlier, we propose using inexpensive messengers (coarse scale solvers), several times
to communicate the most pivotal pieces of information and more expensive messengers (fine scale solvers) fewer times to
pass on some of the finer details (Fig. 1).

In the remainder of this sub-section, we discuss the basic components of the Bayesian model proposed, with particular
emphasis on the prior for the unknown parametric fields. We then present (sub-Section 2.2) the proposed inference tech-
niques for the determination of the posterior.

2.1.1. Likelihood specification
Let Fr ¼ fFr

i g : G ! E denote the vector-valued mapping implied by the forward model (operating at resolution r), which
given f ðxÞ 2 G (Eq. (1)) provides the values of response quantities represented by the data y ¼ fyig 2 E. This function is the
discretized version of the inverse of the differential operator A in Eq. (1) parameterized by f ðxÞ. Each evaluation of Fr for a
specific field f ðxÞ implies a call to the forward solver (e.g. Finite Elements) that operates on a discretization/resolution r. In
the proposed framework, the function Fr will be treated as a black box. Naturally data and model predictions will deviate
when the former are obtained experimentally due to the unavoidable noise in the measurements. Most importantly perhaps
this deviation can be the result of the model not fully capturing the salient physics either because the governing PDEs are an
idealization or because of the discretization error in their solution. We postulate the following relationship:



Fig. 1. Hierarchy of solvers operating on different resolutions.
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yi|{z}
datum i

¼ FðrÞi ðf ðxÞÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
model prediction

þeðrÞi i ¼ 1;2; . . . ;n ð3Þ
where eðrÞi quantify the deviation between model predictions and data, and which will naturally depend on the resolution r of
the forward solver. Quite frequently the data available to us are in the form of disparate observations, that correspond to
different physical phenomena (e.g. temperatures and displacements in a thermo-mechanical problem) in which case the
computational model corresponds to a coupled multiphysics solver.

The probabilistic model for er
i in Eq. (3) gives rise to the likelihood function (Eq. (2)). In the simplest case where eðrÞi are

assumed independent, normal variates with zero mean and variance r2
r :
prðyijf ðxÞ;rrÞ /
1
rr

exp �1
2
ðyi � FðrÞi ðf ðxÞÞÞ

2

r2
r

( )
and prðyjf ðxÞ;rrÞ /

1
rn

r
exp � 1

2r2
r

Xn

i¼1

ðyi � FðrÞi ðf ðxÞÞÞ
2

( )
ð4Þ
More complex models which can account for the spatial dependence of the error variance r2
r or the detection of events asso-

ciated with sensor malfunctions at certain locations, can readily be formulated.
In general the variances r2

r are unknown (particularly the component that pertains to model error) and should be inferred
from the data. When a conjugate, Cða; bÞ prior is adopted for r�2

r , the error variances can be integrated out from Eq. (4) fur-
ther simplifying the likelihood:
Lrðf ðxÞÞ ¼ pðyjf ðxÞÞ / Cðaþ n=2Þ

bþ 1
2

Pn
i¼1
ðyi � FðrÞi ðf ðxÞÞ

2
� �aþn=2 ð5Þ
where CðzÞ ¼
Rþ1

0 tz�1e�tdt is the gamma function.
It should be noted that in some works [31,38], explicit distinction between model and observation errors is made, pos-

tulating a relation of the following form:
observation=data ¼ model predictionþmodel error þ observation error ð6Þ
As it has been observed [70], independently of the amount of data available to us, these three components are not identifiable,
meaning several different values can be equally consistent with the data. This however does not imply that all possible val-
ues are equally plausible. For example a large number of values of the observation error that are all positive or all negative
(for all observations) are not consistent with the perception of random noise but most likely imply a bias of the model or
perhaps a miscalibrated sensors used to collect the data. Bayesian formulations are highly suited for such problems as they
provide a natural way of quantifying a priori and a posteriori relative measures of plausibility. In the following we restrict the
presentation on models of Eq. (3) as the focus of is on identifying the scale of variability of material properties f ðxÞ.
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2.1.2. Prior specification
The most critical component involves the prior specification for the unknown material properties as represented by f ðxÞ.

In existing Bayesian [36,67], but also deterministic (optimization-based), formulations, f ðxÞ is discretized according to the
spatial resolution of the forward solver. For example, in cases where finite elements are used, the property of interest is as-
sumed constant within each element and therefore the vector of unknowns is of dimension equal to the number of elements.
This offers obvious implementation advantages but also poses some difficulties since the scale of variability of material prop-
erties is implicitly selected by the solver rather than the data. This is problematic in several ways. On one hand if the scale of
variability is larger than the grid, a waste of resources takes place, at the solver level which has to be run at unnecessarily fine
resolutions, and at the level of the inference process which is impeded by the unnecessarily large dimension of the vector of
unknowns. Furthermore, as the number of unknowns is much larger by comparison to the amount of data it can lead to over-
fitting. This will produce erroneous or even absurd values for the unknowns that may nevertheless fit perfectly the data. Such
solutions will have negligible predictive ability and would be useless in decision making. On the other hand, if the scale of
variability is smaller than the grid, it cannot be identified even if the solver provides sufficient information for discovering
this possibility.

In order to increase the flexibility of the model, we base our prior models for the unknown field(s) f ðxÞ on the convolution
representation of a Gaussian process. An alternative representation of a stationary Gaussian process involves a convolution
of a white noise process aðxÞ with a smoothing kernel Kð�; /Þ depending on a set of parameters / [3,28]:
f ðxÞ ¼
Z

Kðx� z; /ÞaðzÞdz ð7Þ
The kernel form determines essentially the covariance of the resulting process, since:
covðf ðx1; f ðx2ÞÞ ¼ E½f ðx1; f ðx2Þ� ¼
Z

Kðx1 � z; /ÞKðx2 � z; /Þdz ð8Þ
For computational purposes, a discretized version of Eq. (7) is used:
f ðxÞ ¼
Xk

j¼1

aðzjÞKðx� zj; /Þ ¼
Xk

j¼1

ajKðx� xj; /Þ ð9Þ
In order to increase the expressive ability of the aforementioned model we introduce two improvements. Firstly we consider
that the set of kernel parameters / is spatially varying resulting in a non-stationary process:
f ðxÞ ¼ a0 þ
Xk

j¼1

ajKjðx; /jÞ x 2 D ð10Þ
where a0 corresponds to a value of /0 such that the corresponding kernel is 1 everywhere. Such representations can be
viewed as a radial basis network as in [60,63]. Furthermore by interpreting the kernels as basis functions, Eq. (10) it can
be seen as an extension of the representer theorem of Kimeldorf and Wahba [40]. Overcomplete representations as in Eq.
(10) have been advocated because they have greater robustness in the presence of noise, can be sparser, and can have greater
flexibility in matching structure in the data [45,46]. One possible selection for the functional form of Kj, that also has an intu-
itive parameterization with regards to the scale of variability in the material properties, is isotropic, Gaussian kernels:
Kðx; /j ¼ ðxj; sjÞÞ ¼ expf�sjkx� xjk2g ð11Þ
The parameters sj directly correspond to the scale of variability of f ðxÞ. Large sj’s imply narrowly concentrated fluctuations
and large values slower varying fields. The center of each kernel is specified by the location parameter xj. Other functional
forms (e.g. discontinuous) can also be used on their own or in combinations to enrich the expressivity of the expansion in Eq.
(10). Wavelets, steerable wavelets, segmented wavelets, Gabor dictionaries, multiscale Gabor dictionaries, wavelet packets,
cosine packets, chirplets, warplets, and a wide range of other dictionaries that have been developed in various contexts [6]
offer several possibilities.

The second important improvement is that we allow the size of the expansion k to vary. It is obvious that such an assump-
tion is consistent with the principle of parsimony, which states that prior models should make as few assumptions as possible
and allow their complexity to be inferred from the data.

Hence the cardinalityof the model, i.e. the number of basis functions k is the key unknown that must be determined so as
to provide a good interpretation of the observables.

Independently of the form of the kernel adopted, the important, common characteristic of all such approximations (as in
Eq. (10)) is that the field representation does not depend on the resolution of the forward model. The latter affects inference only
through the black-box functions Fr

i (Eq. (3), Fig. 1)) as it will be illustrated in the next sections.
The parameters of the prior model adopted consist of:

� k: the number of kernel functions needed,
� fajgk

j¼1, the coefficients of the expansion in Eq. (10). Each of those can be a scalar or vector depending on the number of
material property fields we want to infer simultaneously. For example, in a problem of thermo-mechanical coupling
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where the data consists of temperatures and displacements and we want to identify elastic modulus and conductivity,
each aj will be a vector in R2.

� fsjgk
j¼1 the precision parameters of each kernel which pertain to the scale of the unknown field(s), and

� fxjgk
j¼1 the locations of the kernels which are points in D.

In accordance with the Bayesian paradigm, all unknowns are considered random and are assigned prior distributions
which quantify any information, knowledge, physical insight, mathematical constraints that is available to the analyst before
the data is processed. Naturally, if specific prior information is available it can be reflected on the prior distributions. We
consider prior distributions of the following form (excluding hyperparameters):
pðk; fajgk
j¼0; fsjgk

j¼1; fxjgk
j¼1Þ / pðkÞ � pðfajgk

j¼0jkÞ � pðfsjgk
j¼1jkÞ � pðfxjgk

j¼1ÞÞ ð12Þ
In order to increase the robustness of the model and exploit structural dependence we adopt a hierarchical prior model [23].

2.1.2.1. Model size. Pivotal to the robustness and expressivity of the model is the selection of the model size, i.e. of the num-
ber of kernel functions k in Eq. (10). This number is unknown a priori and in the absence of specific information, sparse rep-
resentations should be favored. This is not only advantageous for computational purposes, as the number of unknown
parameters is proportional to k, but also consistent with the parsimony of explanation principle or Occam’s razor
[35,51,53]. For that purpose, we propose a truncated Poisson prior for k:
pðkjkÞ / e�k kk

k!
if k 6 kmax

0 otherwise

(
ð13Þ
The truncation parameter kmax is selected based on computer memory limitations and defines the support of the prior. This
prior allows for representations of various cardinalities to be assessed simultaneously with respect to the data. As a result the
number of unknowns is not fixed and the corresponding posterior has support on spaces of different dimensions as discussed
in more detail in the sequence. In this work, an exponential hyper-prior is used for the hyper-parameter k to allow for greater
flexibility and robustness i.e. pðkjsÞ ¼ s expf�ksg. After integrating out k we obtain:
pðkjsÞ / 1

ðsþ 1Þkþ1 ; for k ¼ 0;1; . . . ; kmax ð14Þ
2.1.2.2. Scale. The most critical perhaps parameters of the model are fsjgk
j¼1 which control the scale of variability in the

approximation of the unknown field(s). If prior information about this is available then it can be readily accounted for by
appropriate prior specification. In the absence of such information however multiple possibilities exist. In contrast to deter-
ministic optimization techniques where ad-hoc regularization assumptions are made, in the Bayesian framework proposed
possible solutions are evaluated with respect to their plausibility as quantified by the posterior distribution. This provides
a unified interpretation of various assumptions that are made regarding the priors of the parameters involved. For example,
consider a general Cðas; bsÞ prior:
pðfsjgk
j¼1jk; as; bsÞ ¼

Yk

j¼1

bas
s

CðasÞ
sas�1

j expð�bssjÞ ð15Þ
This has a mean as=bs and coefficient of variation 1=
ffiffiffiffiffi
as
p

. Diffuse versions can be adopted by selecting small as. A non-infor-
mative prior pðsjÞ / 1=sj arises as a special case for as ¼ 2 and bs ¼ 0 which is invariant under rescaling. Furthermore. it offers
an interesting physical interpretation as it favors ‘‘slower” varying representations (i.e. smaller s’s). In order to automatically
determine the mean of the Gamma prior, we express bs ¼ ljas where lj is a location parameter for which an Exponential hy-
per-prior is used with a hyper-parameter al i.e. pðljÞ ¼ 1

al
e�lj=al . Integrating out the lj’s leads to following prior:
pðfsjgk
j¼1jk; as; alÞ ¼

Yk

j¼1

Cðas þ 1Þ
CðasÞ

aas
s

sðas�1Þ
j

al

1

ðassj þ a�1
l Þ

ðasþ1Þ ð16Þ
2.1.2.3. Other parameters. For the coefficients aj a multivariate normal prior was adopted:
fajgk
j¼0jk;r2

a � Nð0;r2
aIkþ1Þ ð17Þ
where Ikþ1 is the ðkþ 1Þ � ðkþ 1Þ identity matrix. The hyper-parameter r�2
a which controls the spread of the prior is modeled

with a gamma distribution Cða0; b0Þ. It can readily be marginalized leading to the following prior for aj’s:
pðfajgk
j¼0jk; a0; b0Þ ¼

1

ð2pÞðkþ1Þ=2

Cða0 þ kþ1
2 Þ

b0 þ 1
2

Pk
j¼0a2

j

� �a0þðkþ1Þ=2 ð18Þ
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Finally, for the unknown kernel locations fxjgk
j¼1, a uniform prior in D is proposed i.e.:
pðfxjgk
j¼1jkÞ ¼

1

jDjk
ð19Þ
where jDj is the length or area or volume of D in one, two or three dimensions, respectively. Naturally, if prior information is
available about subregions with significant property variations this can be incorporated in the prior.

2.1.2.4. Complete model. Let hk ¼ ffajgk
j¼0; fsjgk

j¼1; fxjgk
j¼1g 2 Hk denote the vector containing all the unknown parameters and

h ¼ ðk; hkÞ. Since k is also assumed unknown and allowed to vary, the dimension of hk is variable as well and
Hk,ðRkþ1 � ðRþÞk �Dk.

In 2D for example and assuming a scalar unknown field f ðxÞ in the expansion of Eq. (10) the dimension of hk is
ðkþ 1Þ þ kþ 2k ¼ 2þ 4k. Based on Eq. (12) and Eqs. (14), (15), (18) and (19), the complete prior model is given by:
pðhjs; as; al; a0; b0Þ ¼
1

ðsþ 1Þkþ1 �
Yk

j¼1

Cðas þ 1Þ
CðasÞ

aas
s

sðas�1Þ
j

1
al

1

ðassj þ a�1
l Þ

ðasþ1Þ �
1

ð2pÞðkþ1Þ=2

Cða0 þ kþ1
2 Þ

b0 þ 1
2

Pk
j¼0a2

j

� �a0þðkþ1Þ=2 �
1

jDjk

ð20Þ
The combination of the prior pðhÞwith the likelihood LrðhÞ (Eq. (5)) corresponding to a forward solver operating on resolution
r, give rise to the posterior density prðhÞ which is proportional to:
prðhÞ ¼ prðhjyÞ / LrðhÞpðhÞ ð21Þ
It should be noted that the fact that conjugate (hyper-)priors have been adopted for r2
r (Eq. (5)) and the hyperparameters k

(Eq. (14)), bs (Eq. (16)) and r2
a (Eq. (18)) allows for their marginalization and gives rise simpler expressions but does not (sig-

nificantly) affect the computational effort involved. In the case of non-conjugate prior models, MCMC updates for these
parameters would have to be performed but those would not require re-calculation of the response FðrÞi ð�Þ (Eq. (5)) which
is the most expensive part, as FðrÞi ð�Þ depend on these parameters indirectly (i.e. through k; aj; sj; xj).

Even though several parameters have been removed from the vector of unknowns h and marginalized in the pertinent
expressions, the corresponding posteriors can be readily be obtained, or rather be sampled from, once the posteriors prðhÞ
have been determined. As it is shown in the numerical examples, of interest could be the variance r2

r of the error term
(Eqs. (3) and (4)) which quantifies the magnitude of the deviation between model and data and can serve as a validation
metric (in the absence of observation error) or be used for predictive purposes (see Section 2.3). From Eq. (3) and the con-
jugate prior model adopted for r2

r , it can readily be shown that the conditional posterior is given by a Gamma distribution:
pðr�2
r ; hjyÞ ¼ pðr�2

r jhÞprðhjyÞ and pðr�2
r jhÞ ¼ C aþ n

2
; bþ

Pn
i¼1ðyi � FðrÞi ðhÞÞ

2

2

 !
ð22Þ
In the context of Monte Carlo simulation, this trivially implies that once samples h from pr have been obtained, the samples
of r�2

r can also be drawn from the aforementioned Gamma.
The support of the posteriors pr lies on [kmax

k¼0 fkg �Hk. Two important points are worth emphasizing. Firstly, Eq. (21) de-
fines a sequence of posterior densities, each corresponding to a different likelihood and a different forward solver of resolution
r. It is clear that the black-box functions FðrÞ appearing in the likelihood in Eq. (4) imply denser mappings for smaller r. This is
because solvers corresponding to coarser resolutions of the governing PDEs are more myopic (compared to solvers at finer
resolutions) to small scale fluctuations of the spatially varying model parameters f ðxÞ (parameterized by h). As a result the
likelihood functions Lr and the associated posteriors pr will be flatter and have fewer modes for smaller r. The task of iden-
tifying these posteriors becomes increasingly more difficult as we move to solvers of higher refinement (i.e. larger r). It is this
feature that we propose of exploiting in the next section in order to increase the accuracy and improve on the efficiency of
the inference process. In addition, the posteriors pr are only known up to a normalizing constant (determining pðyÞ in Eq. (2)
involves an infeasible and unnecessary integration in a very high dimensional space). Each evaluation of pr for a particular h

requires calculating FðrÞ and therefore calling the corresponding black-box solver. As each of these runs of the forward solver
may involve the solution of very large systems of equations they can be extremely time consuming. It is important therefore
to determine pr not only accurately, but also with the least possible number of calls to the forward solver. Since solvers cor-
responding to coarser resolutions (smaller r) are faster, it would be desirable to utilize the information they provide in order
to reduce the number of calls to more expensive, finer resolution solvers.

2.2. Determining the posterior – inference

The posterior defined above is analytically intractable. For that reason, Monte Carlo methods provide essentially the only
accurate way to infer pr . Traditionally Markov Chain Monte Carlo techniques (MCMC) have been employed to carry out this
task [21,29,43,44,66]. These are based on building a Markov chain that asymptotically converges to the target density (in this
case pr) by appropriately defining a transition kernel. While convergence can be assured under weak conditions [48,54], the
rate of convergence can be extremely slow and require a lot of likelihood evaluations and calls to the black-box solver. Par-
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ticularly in cases where the target posterior can have multiple modes, very large mixing times might be required which con-
stitute the method impractical or infeasible. In addition, MCMC is not directly parallelizable, unless multiple independent
chains are run simultaneously and it can be difficult to design a good proposal distribution when operating in high dimen-
sional spaces. More importantly perhaps, standard MCMC is not capable of providing a hierarchical, multi-resolution solution
to the problem. Consider for example, the case that several samples have been drawn using MCMC from the posterior pr1

corresponding to a solver operating on resolution r ¼ r1. If samples of the posterior pr2 are needed, corresponding to a solver
of finer resolution r2 > r1 but not significantly different from r1, then MCMC iterations would have to be initiated anew.
Hence there is no immediate way to exploit the inferences made about pr1 even though the latter might be quite similar
to pr2 .

In this work we advocate the use of Sequential Monte Carlo techniques (SMC). They represent a set of flexible simulation-
based methods for sampling from a sequence of probability distributions [15,50]. As with Markov Chain Monte Carlo meth-
ods (MCMC), the target distribution(s) need only be known up to a constant and therefore do not require calculation of the
intractable integral in the denominator in Eq. (2). They utilize a set of random samples (commonly referred to as particles),
which are propagated using a combination of importance sampling, resampling and MCMC-based rejuvenation mechanisms
[11,10]. Each of these particles, which can be thought of as a possible configuration of the system’s state, is associated with
an importance weight which is proportional to the posterior value of the respective particle. These weights are updated
sequentially along with the particle locations. Hence if fhðiÞr ;w

ðiÞ
r gN

i¼1 represent N such particles and associated weights for dis-
tribution prðhÞ then:
Fig. 2.
governi
prðhÞ �
XN

i¼1

W ðiÞ
r d

h
ðiÞ
r
ðhÞ ð23Þ
where W ðiÞ
r ¼ wðiÞr

.PN
i¼1wðiÞr are the normalized weights and d

h
ðiÞ
r
ð�Þ is the Dirac function centered at hðiÞr . Furthermore, for any

function hðhÞ which is pr-integrable [7,9]:
XN

i¼1

W ðiÞ
r hðhðiÞr Þ !

Z
hðhÞprðhÞdh almost surely ð24Þ
Before discussing the SMC sampler proposed, it is worth recapitulating the basic desiderata:

(a) Accuracy: Monte Carlo scheme should be able to correctly sample from multi-modal distributions.
(b) Hierarchical, multiscale: Monte Carlo scheme should be able to exploit inferences made using forward solvers corre-

sponding to coarser resolutions and refine them as more elaborate forward solvers are used.
(c) Efficiency: Monte Carlo sampler should require the fewest possible calls to the forward solver. It should be directly par-

allelizable and utilize inferences made using cheaper forward solvers corresponding to coarser resolutions in order to
reduce the number of calls to more expensive forward solvers corresponding to finer resolutions.

The goal is to obtain samples from each of the posterior distributions in Eq. (21) corresponding to solvers with increas-
ingly finer spatial resolution of the governing PDEs, r ¼ r1; r2; . . . ; rM where r1 is the coarsest to rM the finest. For economy of
notation we define the artificial posterior pr0 ðhÞ ¼ pðhÞ that coincides with the prior (which is common to all resolutions and
independent of the forward solver). To demonstrate the proposed process it suffices to consider a pair of these posterior den-
sities p1ðhÞ / L1ðhÞpðhÞ and p2ðhÞ / L2ðhÞpðhÞ corresponding to forward solvers at two successive resolutions ri1 and ri2 (Fig. 2)
and discuss the inferential transitions. Let p12;cðhÞ denote a sequence of artificial, auxiliary distributions defined as follows:
p12;cðhÞ ¼ pð1�cÞ
1 ðhÞpc

2ðhÞ ¼ Lð1�cÞ
1 ðhÞLc

2ðhÞpðhÞ c 2 ½0;1� ð25Þ
Illustration of bridging densities as defined in Eq. (25) between posterior distributions p1ðhÞ;p2ðhÞ corresponding to different resolutions of the
ng PDEs. These allow for accurate and computationally efficient transmission of the inferences made to finer scales.
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where c plays the role of reciprocal temperature. Trivially for c ¼ 0 we recover p1 and for c ¼ 1;p2. The role of these auxiliary
distributions is to bridge the gap between p1 and p2 and provide a smooth transition path where importance sampling can be
efficiently applied. In this process, inferences from the coarser scale solver are transferred and updated to conform with the
finer scale solver. Starting with a particulate approximation for pr0 ðhÞ ¼ pðhÞ (which trivially involves drawing samples from
the prior with weights wðiÞ0 ¼ 1), the goal is to gradually update the importance weights and particle locations in order to
approximate the target posteriors at various resolutions. In order to implement computationally such a transition we define
an increasing sequence of fcsg

S
s¼1 with c0 ¼ 0 and cS ¼ 1 (see sub-section 2.2.2). An SMC-based inference scheme would then

proceed as described in Table 1.
2.2.1. Notes

� The role of the Reweighing step is to correct for the discrepancy between the two successive distributions in exactly the
same manner that importance sampling is employed. The Resampling step aims at reducing the variance of the partic-
ulate approximation by eliminating particles with small weights and multiplying the ones with larger weights. The
metric that we use in carrying out this task is the Effective Sample Size (ESS, Table 1) which provides a measure of
degeneracy in the population of particles as quantified by their variance. If this degeneracy exceeds a specified thresh-
old, resampling is performed. As it has been pointed out in several studies [14], frequent resampling can deplete the
population of its informational content and result in particulate approximations that consist of even a single particle.
Throughout this work ESSmin ¼ N=2 was used. Although other options are available, multinomial resampling is most
often applied and was found sufficient in the problems examined.

� A critical component involves the perturbation of the population of samples by a standard MCMC kernel in the Reju-
venation step as this determines how fast the transition takes place. Although there is freedom in selecting the tran-
sition kernel Psð�; �Þ (the only requirement is that it is p12;cs

-invariant), there is a distinguishing feature that will be
elaborated further in the next sub-section (see 2.2.3). The target posteriors pr (as well as the intermediate bridging
distributions in Eq. (25)) live in spaces of varying dimensions as previously discussed. Hence an exploration of the state
space must involve trans-dimensionalproposals. Pairs of such moves can be defined in the context of Reversible-Jump
MCMC (RJMCMC, [25] such as adding/deleting a kernel in the expansion of Eq. (10), or splitting/merging kernels (see
2.2.3). Even though it is straightforward to satisfy the invariance constraint in the RJMCMC framework, it is more dif-
ficult to design moves that also mix fast. As each (RJ)MCMC requires a likelihood evaluation and a call to a potentially
expensive forward solver, it is desirable to minimize their number while retaining good convergence properties.

� In most implementations of such SMC schemes, the sequence of intermediate, bridging distributions is fixed a priori. In
order to ensure a smooth transition, a large number is selected at very closely spaced cs. It is easily understood that for
reasons of computational efficiency, it is desirable to minimize the number of intermediate bridging distributions
while ensuring that the successive distributions are not significantly different. In sub-section 2.2.2 we discuss a novel
adaptive scheme that allow the automatic determination of these distributions resulting in significant computational
savings.

� It should be noted that the framework proposed is directly parallelizable, as the evolution (reweighing, rejuvenation) of
each particle is independent of the rest. Hence the computational effort can be readily distributed to several processors.

� The particulate approximations obtained at each step, provide a concise summary of the posterior distribution based on
the respective forward solver. This can be readily updated in the manner explained above, if forward solvers at finer
resolutions become available or computationally feasible. Similar bridging distributions can be established between
distinct forward solvers with differences going beyond their respective resolutions. This is made possible by the non-
parametric Bayesian model which is independent of the forward solver and the flexible inference engine based on SMC.

� An advantageous feature of the proposed framework is that the confidence in the estimates made can be readily quan-
tified by establishing posterior (or credible) intervals, i.e. the posterior probability that the unknown field of interest
f ðxÞ exceeds or not a specified threshold, from the particulate approximations (Eq. (23)). It is these credible intervals
(or in general measures of the variability in the estimates such as the posterior variance) that can guide adaptive refine-
ment of the governing PDEs. Traditionally, adaptive refinement has been based on estimates of some error norm in the
Table 1
Basic steps of an SMC algorithm.

SMC algorithm:
(1) For s ¼ 0, let fhðiÞ0 ;w

ðiÞ
0 g

N
i¼1 be the initial particulate approximation to p12;c0

¼ p1. Set s ¼ 1.

(2) Reweigh: Update weights wðiÞs ¼ wðiÞs�1
p12;cs ðh

ðiÞ
s�1Þ

p12;cs�1
ðhðiÞ

s�1Þ

(3) Rejuvenate: Use an MCMC kernel Psð:; :Þ that leaves p12;cs
invariant to perturb each particle h

ðiÞ
s�1 ! hðiÞs

(4) Resample: Evaluate the Effective Sample Size, ESS ¼ 1=
PN

i¼1ðW
ðiÞ
sþ1Þ

2 and resample the population if it is less than a prescribed threshold ESSmin.

(5) The current population fhðiÞs ;w
ðiÞ
s gN

i¼1 provides a particulate approximation of p12;cs
in the sense of Eqs. (23), (24).

(6) If s < S (and cs < 1) then set s ¼ sþ 1 and goto to step 2. Otherwise stop.
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solution of the governing PDEs [1]. It is envisioned that the posterior variance at each point x 2 D in the domain inter-
est can serve as the basis for increasing the resolution of the solver at select regions and making optimal use of the
computational resources available.

2.2.2. Bridging distributions p12;cs

The role of these auxiliary distributions is to facilitate the transition between two different posteriors p1 and p2 corre-
sponding to two distinct solvers. It is easily understood that if p1 and p2 are not significantly different, then fewer bridging
distributions will be needed and vice versa. As it is impossible to know a priori how pronounced these differences are, in
most implementations a rather large number of bridging distributions is adopted, erring on the side of safety.

We propose an adaptive SMC algorithm, that extends existing versions [10,11] in that it automatically determines the
number of intermediate bridging distributions needed. In this process we are guided by the Effective Sample Size (ESS, Table
1) which provides a measure of degeneracy in the population of particles. If ESSs is the ESS of the population after the step s
and in the most favorable scenario that the next bridging distribution p12;csþ1

is very similar to p12;cs
; ESSsþ1 should not be that

much different from ESSs. On the other hand if that difference is pronounced then ESSsþ1 could drop dramatically. Hence in
order to determine the next auxiliary distribution, we define an acceptable reduction in the ESS, i.e. ESSsþ1 P fESSs (where
f < 1) and prescribe csþ1 (Eq. (25)) accordingly. The revised Adaptive SMC algorithm is summarized in Table 2.

2.2.3. Trans-dimensional MCMC
As mentioned earlier, a critical component in the SMC framework proposed is the MCMC-based rejuvenation step of the

particles h. It should be noted that the kernel Psð� ; �Þ in the rejuvenation step (Step 3 of the SMC algorithm) need not be
known explicitly as it does not enter in any of the pertinent equations. It is suffices that it is p12;cs

-invariant which is the
target density. For the efficient exploration of the state space, we employ a mixture of moves which involve fixed dimension
proposals (i.e. proposals for which the cardinality of the representation k is unchanged) as well as moves which alter the
dimension k of the vector of parameters h. We consider a total of M ¼ 7 such moves, each selected with a certain probability
as discussed below. Of those, four involve trans-dimensional proposals which warrant a more detailed discussion.

It is generally difficult to design proposals that alter the dimension significantly while ensuring a reasonable acceptance
ratio. For that purpose, in this work we consider proposals that alter the cardinality k of the expansion by 1 i.e. k0 ¼ k� 1 or
k0 ¼ kþ 1. We adopt the Reversible-Jump MCMC (RJMCMC) framework introduced in [25] according to which such moves
are defined in pairs in order to ensure reversibility of the Markov kernel (even though the reversibility condition is not nec-
essary, it greatly facilitates the formulations). We consider two such pairs of moves, namely birth-death and split-merge. Let a
proposal from ðk; hÞ to ðk0; h0Þ that increases the dimension i.e. k0 ¼ kþ 1 and h 2 Hk; h

0 2 Hkþ1 (see last paragraph of sub-Sec-
tion 2.1.2). Let pðk! k0Þ the probability that such a proposal is made (user specified) and pðk0 ! kÞ the probability that the
reverse, dimension-decreasing proposal is made. In order to account for the m ¼ dimðHkþ1Þ � dimðHkÞ difference in the
dimensions of h and h0, the former is augmented with a vector u 2 Rm drawn from a distribution qðuÞ. Consider a differential
and one-to-one mapping h : Hkþ1 ! Hkþ1 that connects the three vectors as h0 ¼ hðh;uÞ. Then as it is shown in [25], the accep-
tance ratio of such a proposal is:
Table 2
Basic st

Adaptiv
(1)

(2)

(3)
(4)
(5)
(6)
min 1;
p12;cs

ðh0Þpðk! k0Þ
p12;cs

ðhÞpðk0 ! kÞ
1

qðuÞ
@h0

@ðh;uÞ

����
����

( )
ð26Þ
where @h0

@ðh;uÞ

��� ��� is the Jacobian of the mapping h. Such a proposal is invariant w.r.t. the density p12;cs
. Similarly one can define,

the acceptance ratio of the reverse, dimension-decreasing move:
min 1;
p12;cs

ðhÞpðk0 ! kÞ
p12;cs

ðh0Þpðk! k0Þ
qðuÞ @h0

@ðh;uÞ

����
�����1

( )
ð27Þ
Details for the reversible pairs used in this work are provided in the Appendix.
eps of the Adaptive SMC algorithm proposed.

e SMC algorithm:
For s ¼ 0, let fhðiÞ0 ;w

ðiÞ
0 g

N
i¼1 be the initial particulate approximation to p12;c0

¼ p1 and ESS0 the associated effective sample size. Set s ¼ 1.

Reweigh: If wðiÞs ðcsÞ ¼ wðiÞs�1
p12;cs ðh

ðiÞ
s�1Þ

p12;cs�1
ðhðiÞ

s�1 Þ
are the updated weights as a function of cs then determine cs so that the associated ESSs ¼ fESSs�1 (the value

f ¼ 0:95 was used in all the examples). Calculate wðiÞs for this cs .

Resample: If ESSs 6 ESSmin then resample.
Rejuvenate: Use an MCMC kernel Psð:; :Þ that leaves p12;cs

invariant to perturb each particle h
ðiÞ
s�1 ! hðiÞs

The current population fhðiÞs ;w
ðiÞ
s gN

i¼1 provides a particulate approximation of p12;cs
in the sense of Eqs. (23), (24).

If cs < 1 then set s ¼ sþ 1 and goto to step 2. Otherwise stop.
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2.3. Prediction

The significance of mathematical models for the computational simulation of physical processes lies in their predictive
ability. It is these predictions that serve as the basis for engineering decisions in several systems of technological interest.
The proposed framework provides a seamless link from experiments/data collection, to model calibration and ultimately
prediction. In the presence of significant sources of uncertainty it is important not only to provide predictive estimates
but quantify the level of confidence one can assign to the predicted outcome. The inferred posteriors pr corresponding to
various model resolutions can be used to carry out this task. In accordance with the Bayesian mind-set, all unknowns are
considered random. If ŷ denotes the output to be predicted (under specified input, boundary and initial conditions) then,
the predictive posterior pðŷjyÞ based on the available data y can be expressed as [23]:
pðŷjyÞ ¼
Z

pðŷ; hjyÞdh ¼
Z

prðŷjh; yÞ pðhjyÞ|fflfflffl{zfflfflffl}
posterior

dh ¼
Z

LrðŷjhÞ|fflfflffl{zfflfflffl}
likelihood

prðhÞdh �
XN

i¼1

W ðiÞ
r LrðŷjhðiÞr Þ ð28Þ
The term pðŷjhÞ is the likelihood of the predicted data determined by the forward solver at resolution r as in Eq. (5). Eq. (28)
offers an intuitive interpretation of the predictive process. The predictive posterior distribution is a mixture of the corre-
sponding likelihoods evaluated at all possible states h of the system, with weights proportional to the their posterior values.
In the context of Monte Carlo simulations, samples of ŷ from pðŷjyÞ can be readily drawn using the particulate approximation
of each pr (Eq. (23)). These samples can subsequently be used to statistics of the predicted output ŷ such as moments, prob-
abilities of exceedance which can be extremely useful in engineering practice.

3. Numerical examples

The method proposed is illustrated in problems from nonlinear solid mechanics using artificial data. The governing PDEs
are those of small-strain, rate-independent, perfect plasticity with a von-Mises yield criterion and associative flow rule [57]:
r � rðxÞ ¼ 0 ðconservation of linear momentumÞ
r ¼ CðE; mÞ : ð�� �pÞ ðelastic stress—strain relationshipsÞ

hðrÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krk2 � 1

3
ðtr½r�Þ2

r
�

ffiffiffi
2
3

r
ryield ðyield surfaceÞ

_�p ¼ k
@h
@r

ðflow ruleÞ ð29Þ
where r is the Cauchy stress-tensor, � ¼ 1
2 ruþ urð Þ and �p the total and plastic-part of the strain tensor, v ¼ ðvx;vy; vzÞ is

the displacement vector, CðE; mÞ is the elastic moduli which depends on the Young’s modulus E (it was assumed that it was
known E ¼ 1000) and Poisson’s ratio m (it was assumed that it was known v ¼ 0:3). The field of interest in all the problems
examined was the yield stress ryieldðxÞ which was assumed to vary spatially. The yield stress determines the boundary of the
elastic domain in the material response. A square two-dimensional domain D ¼ ½0;1� � ½0;1� under plane stress conditions
was considered and the forward solvers were Finite Element models which discretize the governing PDEs of Eq. (29) for
x 2 D. In order to construct a sequence of solvers operating at different resolutions, we considered 4 different partitions cor-
responding to uniform 8� 8;16� 16;32� 32 and 64� 64 grids (i.e. with element sizes 1

8� 1
8 ;

1
16� 1

16 ;
1

32� 1
32 and 1

64� 1
64,

respectively). A critical issue with spatially varying parameters is how this variability is accounted in the discretized repre-
sentation. In this work, we adopted a simple rule according to which each finite element was assigned a constant yield stress
value which was equal to the average of the field ryieldðxÞ within the element. This scheme by no means represents a con-
sistent upscaling of the governing PDEs let alone being optimal. It can be easily established that it can introduce significant
deviations in the effective response which depends on the full details of the spatially varying field. This poor selection is
made however to emphasize the point that inaccurate solvers can be useful and can lead to significant improvements in
accuracy and efficiency. Their role is to provide a computationally inexpensive approximation to the fine-scale posterior that
can be efficiently updated and refined using a reduced number of runs from more expensive solvers. Naturally, if more
sophisticated upscaling schemes are introduced, that is procedures that can better represent the subgrid scales (e.g.
[12,16,33,34,39,55], the transitions in the sequence of posterior become smoother and the computational effort is further
reduced. This is because relatively inexpensive models could still provide us with as much information about the unknown
field f ðxÞ as a more expensive (and perhaps more brute force) solver.

Since ryieldðxÞ > 08x, we used our model to infer logðrðxÞÞ i.e. in Eq. (10), f ðxÞ ¼ logðrðxÞÞ. The adaptive SMC scheme (Table
2) with N ¼ 100 or N ¼ 500 particles was employed in the examples presented with f ¼ 0:95 and ESSmin ¼ N=2.

The following values for the hyperparameters of the prior model were used (Section 2.1.2):

� kmax ¼ 100 and s ¼ 0:1 (Eq. (14)).
� as ¼ 1:0 (Eq. (15)) and al ¼ 0:0001 (Eq. (16)).
� a0 ¼ 2:0 and b0 ¼ 1� 10�6 (Eq. (18)).
� a ¼ 2: and b ¼ 1:� 10�6 (Eq. (5)).
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3.1. Example A

In this example it was assumed that the yield stress varied as follows (Fig. 3):
Table 3
Comput

Solver r

16� 16
32� 32
64� 64
logryieldðxÞ ¼ �1 expf�10x2 � 2ðy� 1Þ2g � 1 expf�2ðx� 1Þ2 � 10y2g ð30Þ
The nonlinear governing PDEs (Eq. (29)) were solved using a 64� 64 uniform finite element mesh with the following bound-
ary conditions:

� vx ¼ vy ¼ 0 along x ¼ 0.
� vx ¼ �vy ¼ 0:001 along x ¼ 1.

The displacements vx;vy at a regular grid consisting of 72 points with coordinates ð0:125i;0:125jÞ, for i ¼ 1; . . . ;8 and
j ¼ 0; . . . ;8 were recorded resulting in n ¼ 144 data points (as in Fig. 3). The empirical mean (of the absolute values) of these
observations lA was calculated and the recorded values were contaminated by Gaussian noise of standard deviation 5%lA in
Fig. 3. Reference ryieldðxÞ field for Example A.

ational cost of different resolution solvers for Example A.

esolution Degrees of freedom Normalized computational time (Actual in s)

510 1
156 (0.55)

2046 1
18 (4.8)

8190 1 (86)

Fig. 4. Posterior inference using only the 64� 64 solver.
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order to obtain sets of observables denoted by fyig
n
i¼1 in our Bayesian model (Eq. (3)). We note that in this example the scale of

variability of the unknown field ryieldðxÞ is larger than the scale of observations, i.e. the grid size where displacements were
recorded.

Table 3 reports the number of degrees of freedom per solver and the normalized computational time for a single run w.r.t.
the 64� 64 solver. As mentioned earlier, each finite element was assigned a constant yield stress equal to the average value
inside the element. This is of course inconsistent with the governing PDEs as the geometry of the variability plays a critical
role for the effective properties of each element. It is easily understood though that the corresponding posterior should have
some similarities arising from the mere nature of their construction.

At first, we attempted to solve the problem by operating solely on the finest solver. Using the Adaptive SMC scheme pro-
posed with N ¼ 100 particles, this resulted in a sequence of 163 (between the prior p0 and the target posterior) auxiliary
bridging distributions constructed as mentioned earlier. The inferred field (posterior mean and quantiles) are depicted in
Fig. 4. Even though they exhibit similarities with the ground truth (Fig. 3), there are also considerable differences which
suggest that the algorithm probably got trapped in some mode of the posterior. This is to be expected due to the highly
Fig. 5. Posterior quantiles at various solver resolutions for Example A.
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nonlinear nature of the forward solver and the large state space. It is possible however that the correct solution could be
recovered if the size of the population and/or the number of bridging distributions is increased. Inspite of that, it is the sig-
nificant computational effort that makes such an approach impractical. In particular 16,300 (i.e. 163� 100) calls to the most
expensive forward solver were required.

In contrast, when a sequence of three solvers was used the results obtained are significantly closer to the ground truth as
it can be seen in Figs. 5 and 6. It is observed that even using the coarsest solver ð16� 16Þ, we are able to correctly identify
some of the basic features of the underlying field. The inferences are greatly improved as solvers at finer resolutions are in-
voked. Fig. 7 depicts the number of bridging distributions needed at each resolution and the respective reciprocal temper-
Fig. 6. Posterior mean at various solver resolutions for Example A.

0.001 0.01 0.1 1
0

50

100

150

200

16 x 16
32 x 32
64 x 64

Fig. 7. Evolution of reciprocal temperature cs (Eq. (25)) and number of bridging distributions.
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atures cs (Eq. (25)). These were automatically determined by the proposed Adaptive SMC with N ¼ 100 particles. It is also ob-
served that the number of intermediate distributions needed decreased as finer resolution solvers are used. This is a direct
consequence of the ability of the proposed scheme to accumulate information from coarser scale solver. These results are
summarized in Table 4 which also reports the effective computational cost at the various stages and in total. It can be seen
that a reduction of the total number of calls is achieved (16,300 vs. 6265) (Table 4).

Fig. 8 depicts the posterior densities of the inferred error standard deviations rr described in Eq. (4). It is readily seen that
the proposed technique is able to quantify the magnitude of the model error for solvers of various resolutions. Furthermore
for the reference resolution 64� 64 it correctly detects that the error contamination is of the level of 5%lA. Finally, Fig. 9
depicts the marginal posterior on k, i.e. the cardinality of the expansion at various resolutions. It should be noted that the
method leads to sparse representations (on average k ¼ 5 and therefore only 21 parameters are needed) without sacrificing
the accuracy. Traditional formulations (deterministic or probabilistic) usually have as many unknowns as elements (i.e. in
the 64� 64 mesh, 4096 parameters) and therefore require operations in very high dimensional spaces with all the negative
implications this carries.
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Fig. 10. Reference ryieldðxÞ field for Example B.
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3.2. Example B

In this example the yield stress ryieldðxÞ was assumed to vary as follows:
Table 5
Comput

Solver r

16� 16
32� 32
64� 64
ryieldðxÞ ¼
0:01; if x 2 ½0:0;0:05� � ½0:75;1:0�
1:0; otherwise

	
ð31Þ
As in the previous example, the governing PDEs were solved using a 64� 64 uniform finite element mesh with the following
boundary conditions for the horizontal vx and vertical vy displacements:

� vx ¼ vy ¼ 0 along x ¼ 0.
� vx ¼ �vy ¼ 0:001 along x ¼ 1.

The displacements vx;vy at a regular grid consisting of 72 points with coordinates ð0:125i;0:125jÞ, for i ¼ 1; . . . ;8 and
j ¼ 0; . . . ;8 were recorded resulting in n ¼ 144 data points (Fig. 10).

The empirical mean of (the absolute values) of these observations lB was calculated and the recorded values were con-
taminated by Gaussian noise of standard deviation 5%lB and 10%lB in order to obtain two sets of observables denoted by
fyig

n
i¼1 in our Bayesian model (Eq. (3)), i.e.:

� Dataset B1 contaminated with 5%lB noise.
� Dataset B2 contaminated with 10%lB noise.

In contrast to the previous problem, the scale of variability of ryieldðxÞ is smaller than the scale of observations, i.e. the grid
size where displacements were recorded. In principle therefore, the data does not sufficiently resolve the material
inhomogeneity.

We considered three different forward solvers (and therefore three posteriors pr) corresponding to a 16� 16;32� 32 and
64� 64 uniform Finite Element discretization. Table 5 reports the number of degrees of freedom per solver and the normal-
ized computational time for a single run w.r.t. the 64� 64 solver. As mentioned earlier, each finite element was assigned a
constant yield stress equal to the average value inside the element.

At first, we attempted to solve the problem with non-contaminated data and operating directly on the finest solver and
trying to sample from a single posterior. The Adaptive SMC scheme proposed with N ¼ 500 particles resulted in a sequence
of 215 auxiliary bridging distributions constructed as mentioned earlier. The algorithm failed to converge to something rea-
sonably close to the reference solution (Fig. 11) as it got trapped in some mode of the posterior. This is to be expected due to
ational cost of different solvers.

esolution Degrees of Freedom Normalized computational time (Actual in s)

510 1
120 (1.5)

2046 1
36 (5.0)

8190 1 (180)



Fig. 11. Posterior inference using only pr corresponding to 64� 64 solver.
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the highly nonlinear nature of the forward solver and the large state space. It is possible however that the correct solution
could be recovered if the size of the population and/or the number of bridging distributions is increased. Despite that, the
associated computational effort that makes such an approach impractical. In particular 107,500 (i.e. 215� 500) calls to
the most expensive forward solver were required.

We employed the algorithm proposed using N ¼ 500 particles and the sequence of posteriors implied by the increasingly
finer solvers and for datasets B1 and B2. Figs. 12 and 13 depict posterior quantiles for B1 and B2, respectively. Despite the
contamination of the reference data, the algorithm is in both cases able to identify fields that are significantly closer to the
ground truth as compared with the inferences above obtained for data with no error.
 0

 1

 0

 1

0.01

 0.1

 1

 10

x

y

 0

 1

 0

 1

 0.01

 0.1

 1

 10

x
y

 0

 1

 0

 1

 0.01

 0.1

 1

 10

x

y

Fig. 12. Posterior quantiles 5% and 95% for inferred ryieldðxÞ from dataset B1.
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Fig. 13. Posterior quantiles 5% and 95% for inferred ryieldðxÞ from dataset B2. Note then even though the 95% quantile is much larger than the reference in
the upper-right hand corner, the 5% quantile correctly bounds it from below.

Table 6
Computational cost for inferences based on dataset B1.

Solver resolution Number of bridging distributions Computational effort (w.r.t. calls to 64� 64 solver)

16� 16 122 508
32� 32 75 1354
64� 64 64 32,889

Total 34,751

Table 7
Computational cost for inferences based on dataset B2.

Solver resolution Number of bridging distributions Computational effort (w.r.t. calls to 64� 64 solver)

16� 16 91 379
32� 32 45 813
64� 64 23 11,819

Total 13,011
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More importantly though these inferences are obtained at a fraction of the computational cost as summarized in Tables 6
and 7. Fig. 14 depicts the posterior densities of the inferred model error standard deviations rr described in Eq. (4). It is read-
ily seen that the proposed technique is able to quantify the magnitude of the model error for solvers of various resolutions.
Furthermore for the reference resolution 64� 64 it correctly detects that the error contamination is of the level of 5%lB and
10%lB for dataset B1 and B2, respectively. Fig. 15 depicts posterior statistics of the inferred ryieldðxÞ field along the line x ¼ 0.
It is noted that the true value is detected for y < 0:75 (or at least is contained in the credible intervals obtained) but signif-
icant differences are observed for y P 0:75. This might seem at first as an erroneous result and a failure of the proposed
scheme. In reality though, we were able to identify configurations that are consistent with the observables and consistent
with the level of noise in the data. It should come as no surprise that the available data (even in the absence of noise) are
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not sufficient to uniquely identify the underlying material properties and especially since the scale of material variability is
smaller than the data grid. There are several configurations equally or comparably compatible as the ground truth. Amongst
all these configurations, the Bayesian scheme proposed favors the ones that are more plausible in the sense of having higher
posterior values. Given the parsimonious construction of the prior model, favoring sparser representations and slower-vary-
ing fields, the proposed algorithm identified the simplest configuration that explains the data. This naturally raises the ques-
tion what should be a proper validation metric of the proposed and other system identification techniques. Given the ill-
posedeness of the problem in the sense explained earlier, we argue herein that validation should be based on the predictive
ability of the identified model. Hence if the inferred material property field(s) can give rise to response predictions consistent
with the predictions of the actual field, then they are equivalent. This is also consistent with the basic functionality of com-
putational forward models and associated parameters as predictive tools of the output/response/performance under various
inputs/excitations and initial/boundary conditions. In order to assess the predictive ability of the inferred field and associ-
ated model, we provide samples of the predictive posterior for the displacements at the center of the domain under a dif-
ferent loading regime than the one for which the training data was obtained. In particular the following boundary
conditions were used:

� Displacements vx ¼ vy ¼ 0 along x ¼ 0.
� Normal traction vx ¼ 0:002 along x ¼ 1:0.

The samples of the predictive posterior were obtained as discussed in Section 2.3 and are depicted in Fig. 16. It is noted
that even for the models corresponding to coarser resolutions, we are able to predict output consistent with the reference
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are considered. As one would expect, the associated uncertainty is larger when inferences were based on dataset B2 as the
latter is contaminated with higher noise levels. Similar conclusions can be drawn when looking at the predictive posterior
(Fig. 17) for vy at ðx ¼ 0:125; y ¼ 1:0Þ very close to the indentation that was inaccurately identified according to Fig. 15. In all
cases the reference value is within the range of predicted outcomes. Similar results were obtained for the response at several
other locations in the specimen and loading conditions, but are omitted due to space restrictions.
3.3. Example C

The final numerical illustration involved an elasto-plastic material model as well occupying the unit square domain
D ¼ ½0;1� � ½0;1�. It was assumed that the yield stress ryieldðxÞ varied spatially as shown in Fig. 18. The particular field is a
realization of a non-Gaussian random field ZðxÞ defined as:
ZðxÞ ¼ 1:01� expf�Y2ðxÞg ð32Þ
where YðxÞ is a homogeneous, Gaussian random field with zero mean, unit variance and isotropic correlation
qðrÞ ¼ expf�r=0:5g. By definition any sample realization of ZðxÞ takes values in [0.01, 1.01).

The following boundary conditions were imposed:

� vx ¼ vy ¼ 0 along x ¼ 0.
� vx ¼ �vy ¼ n 0:001 along x ¼ 1.
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Fig. 18. Reference ryieldðxÞ field for Example C.
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The quasi-static governing PDEs were solved using a uniform 64� 64 finite element mesh for n 2 ½0;1�. The displacements
vx;vy at a regular grid consisting of 72 points with coordinates ð0:125i;0:125jÞ, for i ¼ 1; . . . ;8 and j ¼ 0; . . . ;8 were recorded
at 10 values of n ¼ k0:1; k ¼ 1;2; . . . ;10 resulting in a total of n ¼ 144� 10 ¼ 1;440 data points, say fŷign

i¼1. This data were
contaminated as follows:
Table 8
Comput

Solver r

8� 8
16� 16
32� 32
64� 64
yi ¼ ŷið1þ rygiÞ ð33Þ
where gi � Nð0;1Þ (i.i.d) and ry ¼ 0:05. It was the resulting fyig
n
i¼1 that served as the observables in our Bayesian model (Eq.

(3)). This is particularly challenging example as the scale of variability of ryieldðxÞ is much smaller than the scale of observa-
tions, i.e. the grid size where displacements were recorded as it can be readily seen in Fig. 18.

We considered four different forward solvers (and therefore four posteriors pr ) corresponding to a 8� 8;16� 16;32� 32
and 64� 64 uniform Finite Element discretizations. Table 8 reports the number of degrees of freedom per solver and the
normalized computational time for a single run w.r.t. the 64� 64 solver. As with previous examples, each finite element
was assigned a constant yield stress equal to the average value of ryieldðxÞ inside the element.

Fig. 19 depicts the posterior means for solvers at various resolutions. Table 9 summarizes the associated computational
cost. It is noted that even using the coarsest solver ð8� 8Þ which amounted to an equivalent of 147 runs to the finest solver
ð64� 64Þ, one can get a good idea of the underlying property (compare Fig. 18 with Fig. 19). These inferences are refined by
using the information provided by finer resolution (and more expensive) forward solvers.

In order to assess the predictive ability of the inferred field and associated model, we provide samples of the predictive
posterior for the displacements at the center of the domain under a different loading regime than the one for which the train-
ing data was obtained. In particular the following boundary conditions were used:
ational cost of different solvers.

esolution Degrees of freedom Normalized computational time (actual in s)

126 1
1;588 (0.17)

510 1
321 (0.84)

2046 1
37 (7.3)

8190 1 (270)

Fig. 19. Posterior mean for various resolutions.
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4. Conclusions

A general Bayesian framework has been presented for the identification of spatially varying model parameters. The pro-
posed model utilizes a parsimonious, non-parametric formulation that favors sparse representations and whose complexity
can be determined from the data. An efficient inference scheme based on SMC has been discussed which is embarrassingly
parallelizable and well-suited for detecting multi-modal posterior distributions. They key element is the introduction of an
appropriate sequence of posteriors based on a natural hierarchy introduced by various forward solver resolutions. As a result,
inexpensive, coarse solvers are used to identify the most salient features of the unknown field(s) which are subsequently
enriched by invoking solvers operating at finer resolutions. The overall computational cost is further reduced by employing
a novel adaptive scheme that automatically determines the number of intermediate steps. The proposed methodology does
not require that Markov Chains using all the solvers to be run simultaneously as in other multi-resolution formulations [30] .
The particulate approximations provide a concise way of representing the posterior which can be readily updated if the ana-
lyst wants to employ forward models operating at even finer resolutions or in general more accurate solvers. The output of
the inference algorithm provides estimates of the model error or noise contained in the data. An important feature is the
ability to readily provide not only predictive estimates but also quantitative measures of the predictive uncertainty. Hence
it offers a seamless link between data, computational models and predictions. The efficiency of the sampling schemes pro-
posed could be greatly improved if the proposed moves incorporate information about the governing PDEs and if upscaling
relations are available. A feature that was not explored in the examples presented is the possibility of performing adaptive
refinement, not for the purposes of improving the forward solver accuracy but rather for increasing the resolution of the un-
known fields. This can be achieved in two ways and is a direct consequence of the ability of the proposed model (and Bayes-
ian models in general) to produce credible intervals for the estimates made at each step. Hence in regions where the variance
of the estimates (or some other measure of random variability) is high, the resolution of the forward solver can be increased.
Furthermore, additional measurements/data can be obtained at these regions if such a possibility exists. Hence the proposed
framework allows for near-optimal use of the computational resources and sensors available.
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Appendix A

The Appendix provides details relating to the pairs of reversible updates used in the context of RJMCMC (Section 2.2).
Birth–Death

In order to simplify the resulting expressions, we assign the following probabilities of proposing one of these moves

pbirth ¼ cmin 1; pðkþ1Þ
pðkÞ

n o
¼ c 1

sþ1 (from Eq. (14)) and pdeath ¼ cmin 1; pðk�1Þ
pðkÞ

n o
¼ c (from Eq. (14)). The constant c is user-specified

(it is taken equal to 0.2 in this work). Obviously if k ¼ kmax; pbirth ¼ 0 and if k ¼ 0; pdeath ¼ 0 (Fig. 22a).



Fig. 22. Trans-dimensional RJMCMC proposals.
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For the death move:

� A kernel jð1 6 j 6 kÞ is selected uniformly and removed from the representation in Eq. (10).
� The corresponding aj is also removed.

For the birth move:

� A new kernel kþ 1 is added to the expansion while the existing terms remain unaltered.
� The associated amplitude akþ1 is drawn fromNð0;r2

4Þ (the variance r2
4 is equal to the average of the squared amplitudes aj

over all the particles at the previous iteration).
� The associated scale parameter skþ1 is drawn from the prior, Eq. (16).
� The associated kernel location xkþ1 is also drawn from the prior, Eq. (19).

Hence the vector of dimension-matching parameters u consists of u ¼ ðakþ1; skþ1; xkþ1Þ and the corresponding proposal
qðuÞ is:
�

�

qðuÞ ¼ 1ffiffiffiffiffiffiffi
2p
p 1

r4
e�

1
2a2

kþ1
=r2

4
bas
s

CðasÞ
sas�1

kþ1 expð�bsskþ1Þ
1
jDj ð34Þ
It is obvious that the Jacobian of such a transformation is 1.

Split-merge

These moves correspond to splitting an existing kernel into two or merging two existing kernels into one (Fig. 22b). Sim-
ilarly to the birth-death pair, they alter the dimension of the expansion by 1 and are selected with probabilities psplit ¼ 1

sþ1 and
pmerge ¼ c. For obvious reasons, psplit ¼ 0 if k ¼ kmax and pmerge ¼ 0 if k 6 1. Consider first the merge move between two kernels
j1 and j2. In order to ensure a reasonable acceptance ratio, merge moves are only permitted when the (normalized) distance
between the kernels is relatively small and when the amplitudes aj1 ; aj2 are relatively similar. Specifically we require that the
following two conditions are met:
kxj1 � xj2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�1

j1
þ s�1

j2

q 6 dx jaj1 � aj2 j 6 da ð35Þ
(the values dx ¼ da ¼ 1 were used in this work). Two candidate kernels are selected uniformly from the pool of pairs satis-
fying the aforementioned conditions. The proposed kernels j1 and j2 are removed from the expansion and are substituted by
a new kernel j with the following associated parameters:
sj ¼ ðs�1
j1
þ s�1

j2
Þ�1 ð36Þ

aj ¼
ffiffiffiffi
sj

p aj1ffiffiffiffiffiffisj1
p þ aj2ffiffiffiffiffiffisj2

p
� �

ð37Þ
This ensures that the average value of the previous expansion (with j1 and j2) in Eq. (10) when integrated in Rd is the same
with the new (which contains j in place of j1 and j2)



�
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xj ¼
xj1 þ xj2

2
ð38Þ
The split move is applied to a kernel j (selected uniformly) which is substituted by two new kernels j1; j2. In order to ensure
reversibility, kernels j1 and j2 should satisfy the requirements of Eq. (35) and the application of a merge move in the manner
described above, should return to the original kernel j. There are several ways to achieve this, corresponding essentially to
different vectors u and mappings h in Eq. (26). In this work:

� A scalar us is drawn from the uniform distribution U½0;1� and s�1
j1
¼ uss�1

j and s�1
j2
¼ ð1� usÞs�1

j . This ensures compatibil-
ity with Eq. (36).

� A vector ux is drawn uniformly in the ball of radius R where R ¼ dx
2
ffiffiffi
sj
p . The center of the new kernels are specified as

xj1 ¼ xj � ux and xj2 ¼ xj þ ux. This ensures compatibility with the first of Eq. (35) as well as Eq. (38).

� A scalar ua is drawn from the uniform distribution U � da
2 ;

da
2


 �
. The amplitudes of the new kernels are determined by

aj1 ¼ â� ua and aj2 ¼ âþ ua, where â ¼ aþua
ffiffiffiffi
us
p �

ffiffiffiffiffiffiffiffi
1�us
p� ffiffiffiffi

us
p þ

ffiffiffiffiffiffiffiffi
1�us
p . This ensures compatibility with the second of Eq. (35) as well as

Eq. (37).

The vector of dimension-matching parameters u (in Eq. (26)) consists of u ¼ ðus;ux;uaÞ and the corresponding proposal
qðuÞ is a product of uniforms in the domains specified above. After some algebra, it can be shown that the Jacobian of such a
transformation is 2dþ1 s

u2
s ð1�usÞ2

1ffiffiffiffi
us
p þ

ffiffiffiffiffiffiffiffi
1�us
p .

The remaining three proposals, involve fixed-dimension moves that do not change the cardinality of the expansion but
rather perturb some of the terms involved. In particular, we considered updates of the amplitude aj, scale sj or location xj

of a kernel j selected uniformly (naturally, in the case of the amplitudes, the constant a0 (Eq. (10)) is also a candidate for
updating). Each of these three moves is proposed with probability 1

3 ðpbirth þ pdeath þ psplit þ pmergeÞ ¼ 2c
3

1
sþ1þ 1
� �

. In particular:

(1) Update aj ! a0j: A coefficient aj (in Eq. (10)) is uniformly selected and perturbed as:
a0j ¼ aj þ r1Z; Z � Nð0;1Þ ð39Þ
(2) Update sj ! s0j: A scale parameter sj (in Eq. (10)) is uniformly selected and perturbed as:
s0j ¼ sjer2Z ; Z � Nð0;1Þ ð40Þ

(this ensures positivity of s0j)

(3) Update xj ! x0j: A location xj 2 D 	 Rd (in Eq. (10)) is uniformly selected and perturbed as:
x0j ¼ xj þ r3Z; Z ¼ ðZ1; . . . ; ZdÞ; Zi � Nð0;1Þ ð41Þ
The acceptance ratios are calculated based on the standard MCMC formulas using p12;cs
as the target density. It should be

noted that the variances in the random walk proposals are adaptively selected so that the respective acceptance rates are in
the range 0:2� 0:4. As it is well-known (chapter 7.6.3 in [54] adaptive adjustments of Markov Chains based on past samples
can breakdown ergodic properties and lead to convergence issues in standard MCMC contexts. In the proposed SMC frame-
work however, such restrictions do not apply as it suffices that the MCMC kernel is invariant. This is an additional advantage
of the proposed simulation scheme in comparison to traditional MCMC.
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